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Abstract. This paper introduces the XSalsa20 stream cipher. XSalsa20
is based upon the Salsa20 stream cipher but has a much longer nonce:
192 bits instead of 64 bits. XSalsa20 has exactly the same streaming
speed as Salsa20, and its extra nonce-setup cost is slightly smaller than
the cost of generating one block of Salsa20 output. This paper proves
that XSalsa20 is secure if Salsa20 is secure: any successful fast attack on
XSalsa20 can be converted into a successful fast attack on Salsa20.
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1 Introduction

eSTREAM, the ECRYPT Stream Cipher Project, called for submissions of
stream ciphers in November 2004. It received more than 30 proposals from 97
cryptographers in 19 countries, and over the subsequent years collected a total
of 200 papers. The “final eSTREAM portfolio,” containing four software stream
ciphers and four hardware stream ciphers, was announced in April 2008. The
portfolio was revised in September 2008 to eliminate a hardware stream cipher,
F-FCSR v2, that had been broken.

eSTREAM focused on 80-bit keys for hardware and 128-bit keys for software,
but three of the final four software ciphers also have high-security variants:

• HC-256, 256-bit key, 256-bit nonce, 29.80 cycles/byte, 3.27 cycles/byte;
• Salsa20, 256-bit key, 64-bit nonce, 3.53 cycles/byte, 3.48 cycles/byte; and
• Sosemanuk, 256-bit key, 128-bit nonce, 4.49 cycles/byte, 3.70 cycles/byte.

The two speed reports for each cipher here are for, respectively, 1536-byte packets
and long streams on a Core 2 U9400 10676. These are two of the benchmarks
reported by the eBACS project [18]; see the eBACS web site for many other
measurements.

Salsa20, my own eSTREAM submission, offers high speed for long and short
packets, but has a potential drawback: its nonce is limited to just 64 bits. Is a
64-bit nonce long enough for high-security applications?
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There is a standard argument that a 64-bit nonce is long enough. Nonce
security does not mean unpredictability; it means uniqueness. Applications can
generate a nonce as a monotonic timestamp or simply a counter 1, 2, 3, . . ..

There is also a standard counterargument. Counters might sound simple but
are sometimes mismanaged by applications, destroying security. Rather than
blaming the application for this failure, we can append random bits to the nonce,
adding protection that is likely to succeed even if the counter fails.

Contents of this paper

This paper introduces a new family of stream ciphers, XSalsa20.
XSalsa20 is, at first glance, quite similar to Salsa20: it is built from exactly the

same operations, has exactly the same protections against side-channel attacks,
has exactly the same streaming speed, supports 256-bit keys, and allows reduced-
round variants such as XSalsa20/12.

The advantage of XSalsa20 over Salsa20 is a longer nonce: 192 bits rather
than 64 bits. The disadvantage is that nonce setup is less efficient—but the
extra cost here is comparable to, and in fact slightly smaller than, the cost of
generating a single Salsa20 output block.

XSalsa20 might at first appear to be an ad-hoc design, following standard
principles but potentially vulnerable to new attacks. On the contrary! This paper
proves that any fast successful attack on XSalsa20 can be converted into a fast
successful attack on Salsa20. Confidence in the security of Salsa20 therefore
implies confidence in the security of XSalsa20.

This paper is not meant to take a position in the dispute regarding the
necessity of longer nonces. This paper does not claim any benefits for XSalsa20
in an application that already works with Salsa20’s 64-bit nonces. What this
paper shows is that—in case an application does want longer nonces—the Salsa20
nonce can be safely extended at surprisingly low cost.

Related work

There are several theoretical papers showing various ways that a “fixed-input-
length pseudorandom function” can be used to build a “longer-fixed-input-length
pseudorandom function” (or a “variable-input-length pseudorandom function”).
Often these papers are expressed as constructions of message-authentication
codes, but the underlying proofs show that the constructions are secure ciphers,
i.e., that they are indistinguishable from uniform random functions.

Consider, for example, the “triple-length CBC MAC,” which maps a 384-bit
nonce (n1, n2, n3) to a 128-bit output Ek(Ek(Ek(n1) ⊕ n2) ⊕ n3). Here E is a
cipher mapping 128-bit blocks to 128-bit blocks; for example, E could be AES,
using a 256-bit key k. Bellare, Kilian, and Rogaway proved in [8, Theorem 3.1]
that this 384-bit-to-128-bit function is a secure cipher if E is a secure cipher.
More precisely: The insecurity of this function, against an attacker who sees q
function outputs, is at most the insecurity of E plus 27q2/2129. For simpler proofs



and improved bounds see [42], [34], [12], and [10]. For variants and generalizations
see [11], [21], [33], [28], [31], and [35].

Unfortunately, these security proofs become meaningless as the number of
queries approaches the square root of the number of inputs allowed by the orig-
inal function: 264 for AES, and even fewer for functions with smaller inputs. If
q = 260—a huge but not inconceivable volume of data—then 27q2/2129 is about
5%, an unacceptably large chance of success. The improved bounds are below 5%
but are still unacceptably large. Telling cryptographic implementors that “the
number of messages to be communicated in a session . . . should not be allowed
to approach 2n/2” (as in [19, page 20]) begs the question of what exactly the im-
plementors are supposed to do when the users have more data to transmit—and
the question of how users are supposed to gain confidence in the security of the
resulting protocol. Switching session keys does not magically create immunity to
cryptanalysis! As illustrated by the very recent Albrecht–Paterson–Watson an-
nouncement of a cryptographic flaw in ssh (see [22]), one must analyze complete
cryptographic protocols, not just pieces of those protocols.

There are some security proofs for constructions that can be viewed as switch-
ing session keys. Consider, for example, the “triple-length AES cascade,” which
maps a 384-bit nonce (n1, n2, n3) to a 128-bit output AESAESAESk(n1)(n2)(n3).
Bellare, Canetti, and Krawczyk showed in [6, Theorem 3.1] that this 384-bit-
to-128-bit function is a secure cipher if AES is a secure cipher. More precisely:
The insecurity of this function, against an attacker who sees q function outputs,
is at most 3q times the insecurity of AES. This construction can be viewed as
creating a first-level session key k1 = AESk(n1) from the first part of the nonce,
then creating a second-level session key k2 = AESk1(n2) from the second part of
the nonce, then creating an output AESk2(n3) from the third part of the nonce.

Unfortunately, the security level of this AES cascade is quantitatively unac-
ceptable, even worse than the security level of CBC. Consider an attacker who
collects 243 cascade outputs AESAESAESk(n)(0)(0) for various nonces of the form
(n, 0, 0). The attacker stores these outputs on a large machine consisting of 243

tiny parallel search units. Each search unit cycles through 243 possibilities for k1,
computes AESAESk1 (0)(0), and compares the results to all of the collected out-
puts. (This can be done with negligible communication costs; see, e.g., [14].) The
attacker then has a good chance of discovering an equation k1 = AESk(n), im-
mediately revealing all of the cascade outputs for nonces of the form (n, n2, n3).
This attack does not contradict the security guarantee in [6, Theorem 3.1]; recall
that the insecurity of AES—which is approximately 2−42 against this attacker—
is multiplied by the number of queries. The attack does disprove [5, “Theorem”
3.1], which omitted the factor q, as pointed out ten years later in [6].

The core problem in this AES cascade is the use of AES outputs—which are
only 128 bits—as keys. High security demands larger keys. The cascade also has
a performance problem not present in CBC: the cascade requires an extra AES
key setup for every new n1 and for every new (n1, n2), whereas CBC continues
using the same key. One could build a much more secure AES-based cascade
by using, e.g., 256-bit keys of the form (AESk(n, 0),AESk(n, 1)), but this would



create even larger speed problems. The literature does not seem to contain any
serious attempts to build high-speed high-security cascades.

XSalsa20 can be viewed as a generalized cascade, taking advantage of the
structure of Salsa20 to achieve high security at surprisingly high speed. The
cascade has two levels, with exactly Salsa20 at the second level but with a
slightly modified Salsa20 at the first level; the modification skips some of the
operations in Salsa20 without sacrificing security. Relevant features of Salsa20
include free key setup, a 512-bit block size, randomly accessible output blocks,
and a particularly simple key schedule.

2 Specification

This section defines the XSalsa20 family of stream ciphers. This section also
defines “HSalsa20,” an intermediate step towards XSalsa20. HSalsa20 is a help-
ful tool in the XSalsa20 security proof, can be used as a module in XSalsa20
implementations, and is potentially of independent interest. This section also
discusses the relative speeds of Salsa20, HSalsa20, and XSalsa20.

Review of Salsa20

Salsa20/r produces a 512-bit output block starting from a 512-bit input block
(x0, x1, . . . , x15) where

• (x0, x5, x10, x15) is the “Salsa20 constant”—the 128-bit string 0x61707865,
0x3320646e, 0x79622d32, 0x6b206574;

• (x1, x2, x3, x4, x11, x12, x13, x14) is a 256-bit key,
• (x6, x7) is a 64-bit nonce, and
• (x8, x9) is a 64-bit block counter, the position of the 512-bit output block in

the Salsa20 output stream.

Salsa20/r applies r/2 iterations of the “double-round” function defined in [13,
Section 6], obtaining (z0, z1, . . . , z15) = doubleroundr/2(x0, x1, . . . , x15). It then
outputs (x0+z0, x1+z1, . . . , x15+z15). Here + is addition of 32-bit words modulo
232. All 32-bit words are viewed as strings in little-endian form.

Each round of Salsa20 uses 16 additions, 16 xors, and 16 rotations of 32-bit
words; see [13, Sections 3–5]. Consequently Salsa20/r uses 16r + 16 additions,
16r xors, and 16r rotations to generate an output block.

I originally recommended—and continue to recommend—Salsa20/20, with
Salsa20/12 and Salsa20/8 as faster options for users who value speed more highly
than confidence. Four attack papers by fourteen cryptanalysts ([24], [26], [41],
and [3]) culminated in a 2184-operation attack on Salsa20/7 and a 2251-operation
attack on Salsa20/8. The eSTREAM portfolio recommended Salsa20/12: “Eight
and twenty round versions were also considered during the eSTREAM process,
but we feel that Salsa20/12 offers the best balance, combining a very nice per-
formance profile with what appears to be a comfortable margin for security.”



The recent paper [37] claimed to “show that Salsa20 does not have 256-
bit security.” I responded in [17] that “the best ‘attack’ in the paper receives
ciphertexts from 2191 users and finds a 256-bit key after time 2192 on a machine
of size roughly 2192” and that this is “vastly more expensive than the standard
brute-force attacks discussed in the original Salsa20 documentation.” There was
no further comment from the authors of [37]. In any event, the claims of [37] are
orthogonal to the topic of this paper. If Salsa20 has high security then XSalsa20
has high security; if Salsa20 has extremely high security then XSalsa20 has
extremely high security.

Definition of HSalsa20

HSalsa20/r starts from a 512-bit input block (x0, x1, . . . , x15) where

• (x0, x5, x10, x15) is the Salsa20 constant,
• (x1, x2, x3, x4, x11, x12, x13, x14) is a 256-bit key, and
• (x6, x7, x8, x9) is a 128-bit nonce.

HSalsa20/r applies r/2 iterations of the same “double-round” function, obtaining
(z0, z1, . . . , z15) = doubleroundr/2(x0, x1, . . . , x15). HSalsa20 then outputs the
256-bit block (z0, z5, z10, z15, z6, z7, z8, z9). The indices 0, 5, 10, 15, 6, 7, 8, 9 here
were not chosen arbitrarily; the choice is important for the security proof later
in this paper.

Observe that HSalsa20 skips the final 16 additions in Salsa20, leaving only
128 additions in HSalsa20/8, 192 additions in HSalsa20/12, etc. HSalsa20 also
eliminates the final 16 loads of (x0, x1, . . . , x15), and 8 of the final 16 stores. The
overall savings are platform-dependent.

Note that, in Salsa20, the loads and additions of the key words (x1, x2, x3,
x4, x11, x12, x13, x14) are critical for security, since the double-round function is
trivially invertible. One might think that the remaining loads and additions could
be skipped without sacrificing security, achieving almost half of the HSalsa20
savings. However, this change would interfere with the vector loads and vector
additions used in many high-speed Salsa20 implementations.

Definition of XSalsa20

XSalsa20/r starts from a 512-bit input block (x0, x1, . . . , x15) where

• (x0, x5, x10, x15) is the Salsa20 constant,
• (x1, x2, x3, x4, x11, x12, x13, x14) is a 256-bit key, and
• (x6, x7, x8, x9) is the first 128 bits of a 192-bit nonce.

XSalsa20/r computes (z0, z1, . . . , z15) = doubleroundr/2(x0, x1, . . . , x15). It then
builds a new 512-bit input block (x′0, x

′
1, . . . , x

′
15) where

• (x′0, x
′
5, x
′
10, x

′
15) is the Salsa20 constant,

• (x′1, x
′
2, x
′
3, x
′
4, x
′
11, x

′
12, x

′
13, x

′
14) = (z0, z5, z10, z15, z6, z7, z8, z9),



• (x′6, x
′
7) is the last 64 bits of the 192-bit nonce, and

• (x′8, x
′
9) is a 64-bit block counter.

XSalsa20 then computes (z′0, z
′
1, . . . , z

′
15) = doubleroundr/2(x′0, x

′
1, . . . , x

′
15) and

outputs the 512-bit block (x′0 + z′0, x
′
1 + z′1, . . . , x

′
15 + z′15). Overall XSalsa20 has

the same shape as Salsa20, except for the much longer nonce: it produces a
512-bit output block given a 256-bit key, a 192-bit nonce, and a 64-bit block
counter.

In other words, XSalsa20/r is a two-level generalized cascade, using the out-
put of HSalsa20/r as a key for Salsa20/r. From an implementor’s perspective, one
can generate a stream of output blocks with XSalsa20/r by computing a single
HSalsa20/r output block and then tail-calling an existing function to generate
a stream of output blocks with Salsa20/r. This straightforward implementation
strategy immediately produces the same streaming speeds for XSalsa20/r that
have already been achieved for Salsa20/r. See [16] and [18] for surveys of those
speeds. The overhead for XSalsa20/r, compared to Salsa20/r, is the HSalsa20/r
computation, which as discussed above is slightly faster than computing a single
Salsa20/r output block.

3 Security proof

This section proves that HSalsa20 and XSalsa20 are secure if Salsa20 is secure.
Specifically, this section proves a new security theorem for generalized cascades,
improving both qualitatively and quantitatively upon [6]; applies the theorem
to XSalsa20, showing that XSalsa20 is secure if Salsa20 and HSalsa20 are both
secure; and, finally, proves that HSalsa20 is secure if Salsa20 is secure.

This paper uses the standard “PRF” notion of cipher security: a cipher is
secure if the cipher outputs for a uniform random secret key are indistinguishable
from independent uniform random strings. This notion is well known to be a
suitable foundation for simple, efficient, state-of-the-art cryptographic protocols.
One can build protocols that rely on other notions of cipher security, such as
resistance to various types of “related-key attacks”; however, there does not
appear to be any literature claiming advantages of those protocols, so this paper
focuses on the standard security notion.

The theorems and proofs in this section rely on the standard language of
probability theory. In particular, this section assumes that the reader is familiar
with the mathematician’s definition of a random variable: a random element of
a measurable space M is a measurable function from a fixed probability space
Pr (intuitively, the set of all possible universes) to M . See [15, Appendix A] for
a three-page discussion of the standard language and its benefits. Advocates of
other languages, such as the language of “games,” might view this section as a
challenge: can those languages be used to express the same theorems and proofs
without sacrificing generality and without sacrificing simplicity?

Generalized cascades

Theorem 3.1 generalizes the construction of XSalsa20 as follows:



• The set of 256-bit HSalsa20 keys is generalized to any finite set K1.
• The set of 128-bit HSalsa20 inputs is generalized to any set I1, not necessarily

finite.
• The set of 256-bit HSalsa20 outputs—and of 256-bit Salsa20 keys—is gen-

eralized to any finite set K2.
• HSalsa20 is generalized to any computable function H : K1 × I1 → K2.
• The set of 128-bit Salsa20 inputs (each consisting of a 64-bit nonce and 64-bit

block counter) is generalized to any set I2, not necessarily finite.
• The set of 512-bit Salsa20 output blocks is generalized to any finite set L.
• Salsa20 is generalized to any computable function S : K2 × I2 → L.
• XSalsa20 is generalized to a function X : K1 × I1 × I2 → L, specifically the

function (k1, i1, i2) 7→ S(H(k1, i1), i2).

Compared to this generalized cascade, the two-level cascade considered in [6]
is the following special case: I1 = I2 = {0, 1}b; K1 = K2 = L = {0, 1}k; and
H = S. The assumption I1 = I2 is compatible with XSalsa20, but the assumption
H = S does not allow the distinction between Salsa20 and HSalsa20, and the
assumption K2 = L would force XSalsa20 to drop half of the output bits in each
block.

[6] also considers three-level cascades, four-level cascades, etc. One can view
an (` + 1)-level cascade as a generalized two-level cascade where the first level
is an `-level cascade. [6, Theorem 3.1], although described in [6] as “(almost)
optimal,” is quantitatively too weak to be used in this type of composition: it
loses a factor of q at each level of the composition, where q is the number of
attack queries. Theorem 3.1 below fixes this quantitative flaw.

Security proof for generalized cascades

Consider a generalized cascade X = ((k1, i1, i2) 7→ S(H(k1, i1), i2)). The goal of
an attack is to distinguish an oracle for X(k1), where k1 is a uniform random
element of K1, from an oracle for a uniform random function from I1 × I2 to L.
Here X(k1) means (i1, i2) 7→ X(k1, i1, i2); i.e., (i1, i2) 7→ S(H(k1, i1), i2).

Starting from a fast successful attack against X(k1), the security proof con-
structs fast attacks against H(k1) and S(k2), where k2 is a uniform random
element of K2, and shows that at least one of these attacks must be successful.
Contrapositive: if H and S are both secure, then X must also be secure.

Specifically, given an algorithm A, define algorithms A0, A1, A2, . . . as follows:

• The algorithm A0, given an oracle O : I1 → K2, runs the algorithm A with
the oracle (i1, i2) 7→ S(O(i1), i2).
• For j ≥ 1: The algorithm Aj , given an oracle O : I2 → L, generates (lazily)

a uniform random function U from I1 × I2 to L and, independently of U , a
uniform random function V from I1 to K2. It runs the algorithm A with the
following oracle: respond to (i1, i2) with U(i1, i2) for the first j − 1 distinct
query prefixes i1 that appear, with O(i2) for the jth distinct query prefix,
and with S(V (i1), i2) for all other query prefixes.



Theorem 3.1 states that the A-distance from X(k1) to uniform—i.e., the gap
|Pr[A(X(k1)) = 1]− Pr[A(U) = 1]|—is at most the sum of the A0, A1, . . . , Aq-
distances from, respectively, H(k1), S(k2), . . . , S(k2) to uniform.

Note that A0(H(k1)) is exactly the same computation as A(X(k1)), so in
particular it has the same speed and carries out the same number of oracle
queries. The other algorithms Aj replace each H(k1, i1) computation by gener-
ation of a uniform random V (i1); furthermore, as j increases, these algorithms
progressively replace each S(V (i1), i2) computation by generation of a uniform
random U(i1, i2).

Theorem 3.1. Let K1, I1,K2, I2, L be sets, with K1,K2, L finite. Let H be a
function from K1 × I1 to K2. Let S be a function from K2 × I2 to L. Define
X as the function (k1, i1, i2) 7→ S(H(k1, i1), i2) from K1 × I1 × I2 to L. Let
A be an algorithm that makes at most q oracle queries. Define A0, A1, . . . , Aq

as above. Define δ0 as the A0-distance from H(k1) to uniform, where k1 is a
uniform random element of K1. Define δj, for j ∈ {1, . . . , q}, as the Aj-distance
from S(k2) to uniform, where k2 is a uniform random element of K2. Then the
A-distance from X(k1) to uniform, where k1 is a uniform random element of
K1, is at most δ0 + δ1 + · · ·+ δq.

As a corollary, if H has insecurity ≤ ε against algorithms as fast as A0,
and S has insecurity ≤ ε′ against algorithms as fast as A1, . . . , Aq, then X has
insecurity ≤ ε + qε′ against algorithms as fast as A. Note that this bound is
affected less by the insecurity of H than by the insecurity of S. Designers might
view this as a reason to choose H less conservatively than S, and theoreticians
might try to prove security under weaker assumptions on H; on the other hand,
it is not clear how much room is left to improve upon the speed of HSalsa20!

By induction an `-level generalized cascade has insecurity ≤ ε1 + qε2 +
qε3 + · · · + qε` if each level n has insecurity ≤ εn. In particular, an `-level non-
generalized cascade has insecurity ≤ (1 + (` − 1)q)ε if each level has insecurity
≤ ε.

For comparison, [6, Theorem 3.1] proves a weaker bound of `qε for an `-level
cascade. As mentioned above, this bound is not suitable for composition, so the
proof in [6] has to directly handle all `, rather than focusing on the simplest case
` = 2.

Proof. Define oracles O−1, O0, O1, . . . , Oq as follows:

• O−1 is X(k1).
• Oj , for j ≥ 0, generates a uniform random function U ′ : I1 × I2 → L and a

uniform random function V ′ : I1 → K2 independent of U ′. It then responds
to (i1, i2) with U ′(i1, i2) for the first j distinct query prefixes i1 that appear,
and with S(V ′(i1), i2) for other query prefixes.

By hypothesis A performs at most q oracle queries, so A(Oq) = A(U ′). Hence
the A-distance from X(k1) to uniform is exactly the A-distance from O−1 to Oq.
This is, in turn, is at most the sum of the A-distances from O−1 to O0, from O0



to O1, from O1 to O2, and so on through Oq. The rest of the proof will show
that these distances are exactly δ0, δ1, δ2, . . . , δq.

The oracle O−1 is (i1, i2) 7→ S(H(k1, i1), i2) so A(O−1) = A0(H(k1)). Sim-
ilarly O0 is (i1, i2) 7→ S(V ′(i1), i2) so A(O0) = A0(V ′). Hence the A-distance
from O−1 to O0 is exactly the A0-distance from H(k1) to V ′; i.e., exactly δ0.

Now fix j ∈ {1, 2, . . . , q}. Let k2 be a uniform random element of K2. By
construction Aj(S(k2)) runs A with an oracle that responds to (i1, i2) with
U(i1, i2) for the first j − 1 distinct query prefixes i1, with S(k2, i2) for the jth
distinct query prefix, and with S(V (i1), i2) for all other query prefixes. Here U
is a uniform random function from I1× I2 to L; V is a uniform random function
from I1 to K2; and k2, U, V are independent.

Define V ′(i1) as k2 if i1 is the jth distinct query prefix that occurred in this
run, and as V (i1) otherwise. Also define U ′ = U . Then V ′ is a uniform random
function from I1 to K2 (since the jth distinct query prefix is independent of k2);
U ′ is a uniform random function from I1 × I2 to L; and U ′, V ′ are independent.
Furthermore, the oracle responses were exactly U ′(i1, i2) for the first j−1 distinct
query prefixes i1 and S(V ′(i1), i2) for other query prefixes; i.e., the responses
from Oj−1. Consequently Aj(S(k2)) = A(Oj−1).

Similarly, let W be a uniform random function from I2 to L. By construction
Aj(W ) runs A with an oracle that responds to (i1, i2) with U(i1, i2) for the first
j−1 distinct query prefixes i1, with W (i2) for the jth distinct query prefix, and
with S(V (i1), i2) for all other query prefixes. As before U is a uniform random
function from I1 × I2 to L; V is a uniform random function from I1 to K2; and
U, V,W are independent.

Define U ′(i1, i2) as W (i2) if i1 is the jth distinct query prefix that occurred
in this run, and as U(i1, i2) otherwise. Also define V ′ = V . Then U ′ is a uniform
random function from I1 × I2 to L; V ′ is a uniform random function from I1 to
K2; and U ′, V ′ are independent. Furthermore, the oracle responses were exactly
U ′(i1, i2) for the first j distinct query prefixes i1 and S(V ′(i1), i2) for other query
prefixes; i.e., the responses from Oj . Consequently Aj(W ) = A(Oj).

Conclusion: The A-distance from Oj−1 to Oj is exactly the Aj-distance from
S(k2) to W ; i.e., exactly δj . ut

Notes on low-memory attacks

Among cryptanalysts there is an increasingly popular movement away from the
simple but physically unrealistic idea that computations can instantaneously
access unlimited amounts of RAM. In more sophisticated models of computation,
the cost of the algorithm Aj defined above may be swamped by the time and
space required to manage an array of U values, an array of V values, and an
array of the first j distinct query prefixes.

A standard way to eliminate the space for U and V is to replace random-
number generation by pseudorandom-number generation. If there exists any fast
cipher with security level above the cost of A then one can safely use that cipher
as a replacement for U and V , after generating a single uniform random cipher
key.



Eliminating the space for the array of query prefixes takes more work. One
possible approach is to map I1 pseudorandomly to {1, 2, . . . , q}, and compare
query prefixes to j under this map (hoping that j is not produced by two differ-
ent query prefixes), rather than attempting to keep track of the actual time of
appearance of each prefix. Another possible approach is to map I1 to {0, 1} and
recursively analyze the two halves of the query prefixes.

For simplicity this paper analyzes only Aj , rather than these potentially less
expensive variants.

Security proof for XSalsa20

Fix r ∈ {2, 4, 6, . . .}. Theorem 3.2 states that XSalsa20/r is secure if Salsa20/r
and HSalsa20/r are secure.

Define HSalsak(i), where k is a 256-bit string and i is a 128-bit string, as the
256-bit HSalsa20/r output block for key k and nonce i. Recall that this output
is (z0, z5, z10, z15, z6, z7, z8, z9) where (x0, x5, x10, x15) is the Salsa20 constant,
(x1, x2, x3, x4, x11, x12, x13, x14) is the key k, (x6, x7, x8, x9) is the input i, and
(z0, z1, . . . , z15) = doubleroundr/2(x0, x1, . . . , x15).

Define Salsak(i), where k is a 256-bit string and i is a 128-bit string, as
the 512-bit Salsa20/r output block for key k, nonce equal to the first half of
i, and block counter equal to the second half of i. Recall that this output is
(x0 + z0, x1 + z1, . . . , x15 + z15) where (x0, x5, x10, x15) is the Salsa20 constant,
(x1, x2, x3, x4, x11, x12, x13, x14) is the key k, (x6, x7, x8, x9) is the input i, and
(z0, z1, . . . , z15) = doubleroundr/2(x0, x1, . . . , x15).

Define XSalsak(i), where k is a 256-bit string and i is a 256-bit string, as
the 512-bit XSalsa20/r output block for key k, nonce equal to the first 192 bits
of i, and block counter equal to the last 64 bits of i. Recall that this output is
(x′0 + z′0, x

′
1 + z′1, . . . , x

′
15 + z′15) where

• (x0, x5, x10, x15) is the Salsa20 constant,
• (x1, x2, x3, x4, x11, x12, x13, x14) is the key k,
• (x6, x7, x8, x9) is the first 128 bits of the input i,
• (z0, z1, . . . , z15) = doubleroundr/2(x0, x1, . . . , x15),
• (x′0, x

′
5, x
′
10, x

′
15) is the Salsa20 constant again,

• (x′1, x
′
2, x
′
3, x
′
4, x
′
11, x

′
12, x

′
13, x

′
14) = (z0, z5, z10, z15, z6, z7, z8, z9),

• (x′6, x
′
7, x
′
8, x
′
9) is the last 128 bits of the input i, and

• (z′0, z
′
1, . . . , z

′
15) = doubleroundr/2(x′0, x

′
1, . . . , x

′
15).

Consequently XSalsak(i) = SalsaHSalsak(i1)(i2) where i1 is the first half of the
input i and i2 is the second half of the input i.

Theorem 3.2. Let A be an algorithm that makes at most q oracle queries. De-
fine A0, A1, . . . , Aq as above, where K1 = K2 = {0, 1}256, I1 = I2 = {0, 1}128,
and L = {0, 1}512. Let k be a uniform random element of {0, 1}256. Define δ0
as the A0-distance from HSalsak to uniform. Define δj, for j ∈ {1, . . . , q}, as
the Aj-distance from Salsak to uniform. Then the A-distance from XSalsak to
uniform is at most δ0 + δ1 + · · ·+ δq.



Proof. Define H : K1 × I1 → K2 as (k, i) 7→ HSalsak(i). Define S : K2 × I2 → L
as (k, i) 7→ Salsak(i). Define X : K1×I1×I2 → L as (k, i1, i2) 7→ XSalsak(i1, i2).
Then X(k, i1, i2) = S(H(k, i1), i2). The A-distance from X(k) to uniform is at
most δ0 + δ1 + · · ·+ δq by Theorem 3.1. ut

Security proof for HSalsa20

Theorem 3.3 states that HSalsa20/r is secure if Salsa20/r is secure. The theorem
applies to any distribution of keys, and in particular to the uniform distribution
considered in Theorem 3.2. Combining Theorem 3.3 with Theorem 3.2 shows
that XSalsa20/r is secure if Salsa20/r is secure.

Theorem 3.3. Let k be a random element of {0, 1}256. Let A be an algorithm.
Define Q : {0, 1}128 × {0, 1}512 → {0, 1}256 by Q(x6, x7, x8, x9, s0, s1, . . . , s15) =
(s0 − x0, s5 − x5, s10 − x10, s15 − x15, s6 − x6, s7 − x7, s8 − x8, s9 − x9) where
(x0, x5, x10, x15) is the Salsa20 constant. Define B as the algorithm that, given
an oracle O : {0, 1}128 → {0, 1}512, runs A with the oracle i 7→ Q(i, O(i)). Then
the A-distance from HSalsak to uniform is the same as the B-distance from
Salsak to uniform.

As a corollary, if Salsa20 has insecurity ≤ ε against any algorithm as fast as
B, then HSalsa20 has insecurity ≤ ε against any algorithm as fast as A. Note
that B has almost exactly the same speed as A.

Proof. Compare the definitions of Salsa20 and HSalsa20 to see that if i =
(x6, x7, x8, x9) and Salsak(i) = (s0, s1, . . . , s15) then HSalsak(i) = (s0 − x0,
s5 − x5, s10 − x10, s15 − x15, s6 − x6, s7 − x7, s8 − x8, s9 − x9) = Q(i,Salsak(i)).
Hence B(Salsak) = A(i 7→ Q(i,Salsak(i))) = A(HSalsak(i)).

Let U be a uniform random function from {0, 1}128 to {0, 1}512. Define V (i) =
Q(i, U(i)). Then V is a uniform random function from {0, 1}128 to {0, 1}256.
Furthermore B(U) = A(V ).

The B-distance from Salsak to U is therefore the same as the A-distance
from HSalsak(i) to V . ut

The definition of Q in Theorem 3.3 is designed to provide two critical prop-
erties of the function Q(i):

• Q(i) is a public computation of HSalsak(i) from Salsak(i).
• Q(i) is a public computation of uniform random strings from uniform random

strings.

The first property takes advantage of the choice of indices 0, 5, 10, 15, 6, 7, 8, 9 in
the definition of HSalsa20. The second property is not a mere technicality—for
example, if HSalsa20 were redefined to output (z0, z0, z0, z0, z0, z0, z0, z0), then
it would still be publicly computable from the Salsa20 input and output without
knowledge of the key, but of course it would not be secure!
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